Resilience for Dairy (R4D) has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101000770

Innovative solutions supporting resilience of dairy farms in Netherlands

Paul Galama, Jelle Zijlstra, Abele Kuipers

Tesilience

Or

 \bigcirc

LYON 30/8/2023

EAAP – WAAP – INTERBULL – 2023 – LYON – FRANCE

- What does resilience mean?
- Needs within the context of challenges Dutch dairy sector
- Strategies in general and priorities group of farmers

Meeting with farmers, education and advisors about changes in the dairy sector (needs) and solutions

What is te meaning of resilience to you?

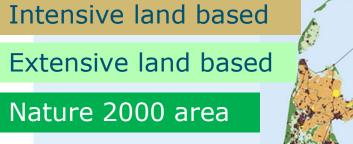
	Alternative term		Number of times mentioned
1	Adaptability, adapt, ada	8	
2	Recovering capacity, r	6	
3	Robust farm concept,	3	
4	Flexibility		2
5	Anticipating		2
6	Stress resistant		1
7	Good revenue model	Resilience	1
8	Tipping point	1. Robust	1
		2. Adaptation	
	WAGENINGEN	3. Transformation	

airy

The Dutch dairy sector

- 14.300 dairy farms, 1.5 million dairy cows
- 4.2 % organic farmers
- 110 cows per farm per farm
- 58 ha per farm, 50 ha grassland, 8 ha maize
- 2.1 cows per ha
- 59% sand, 29% clay and 12% peat soil
- 86% farms grazing
- 9000 kg milk per cow

Many environmental challenges


- 41% reduction NH3 by agriculture in 2030
- 55% less green house gases in 2030 vs 1990
- Water quality: low nitrogen and phosphate application;
 3 m without application along ditches
- Nitrate directive: No more derogation on manure
 - -> max 43 ton manure / ha
- Biodiversity

Challenge to combine reduction emissions with land use planning

Issues around Agricultural Agreement

- Stimulus to keep less animals, more grass and extensive
- Stimulus to innovate and secure them
- Measure emissions and manage with sensor technology
- Certified calculating system / mineral accounting system
- Urge to society and retail: for higher agricultural prices and payment for eco services

	Major change (in the next 10 years)	Avg. score importance (1-5 range)
	Sustainability themes	
Highest	Environment	4.30
-	Soil fertility	4.10
scoring major	Greenhouse gases	3.90
	Animal welfare	3.70
changes	Circular agriculture	
5	Circular agriculture	4.00
and their	Entrepreneurship / diversification	
	Milk price / bonus price	4.00
importance	Farm succession	3.60
-	Policy The Netherlands	
	Inconsistancy of government policy	3.80
	Environmental permits	3.80
Resilience	Land rent laws	3.50
4 for Dairy	EU policy	
	CAP: doing more for less money	3.80
	Farm2Fork policy	3.50
	Economy / costs	
	Cost increases	4.00
	Market and society	10
	Dairy cooperatives less dominant	3.50

Highest scoring adaptations and their relevance

Adaptation to increase resilience	Average score of relevance (range 1 to 5)			
Develop a revenue model				
Create margins	4,5			
Improving valorization milk/meat	4,2			
Generate money for adaptations	4,0			
Identify opportunities and seize them				
Identify opportunities	4,5			
Be aware of opportunities and threats	4,4			
Making a (business) plan to prepare for the future				
Make a medium-term plan	4,4			
Personal development / knowing personal strengths				
Know your strengths and weaknesses	4,3			
Acquire knowledge	4,3			
Adapt farm / develop business				
Preparing soil for the future	4,2			
Exploit the social environment				
Communicate, collaborate and connect	3,3			

Strategies for the future; which direction?

- Scaling up
- Intensive
- Low cost
- High tech
- Specialize
- Animal
- Innovate
- Farm level

- Extensive / grazing
- Added value
- 📫 Natural
 - Mixed farming
- 📫 Plant

- Close farms
- Regional level

Resilience

- 1. Robust
- 2. Adaptation
- 3. Transformation

Strategies for the future

- Scaling up
- Intensive
- Low cost
- High tech
- Specialize
- Animal
- Innovate

Farm level

- Scaling down
- Extensive / grazing
- Added value
- Natural
- Mixed farming

Regional level

Solutions group farmers

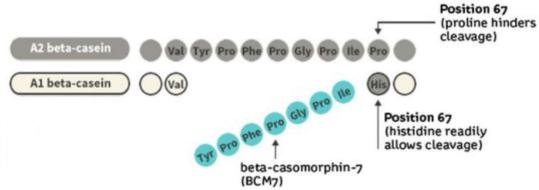
- 1. Optimize and Adapt
 - less emissions
 - welfare
 - biodiversity
- 2. Transform
 - new business
 - (food, energy, ...)
 - entrepreneurship

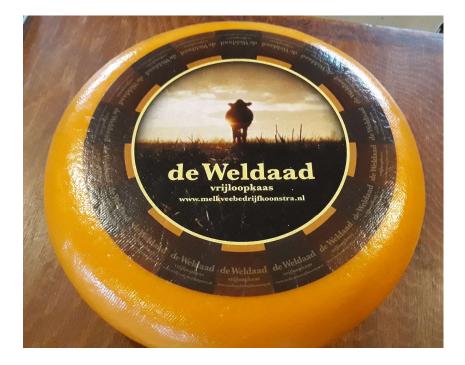
Examples adaptation and new revenue model

- Housing system in relation to animal welfare, manure quality and lower emissions of ammonia and methane
 - Sand bedding in cubicles
 - Freewalk housing
 - Separation urine and feces
- Added value milk: freewalk cheese and A2 milk
- Energy production:
 - collect methane from manure storages
 - Produce hydrogen (H2)
- Total concept: precision farming, climate, nature and circular

Freewalk housing

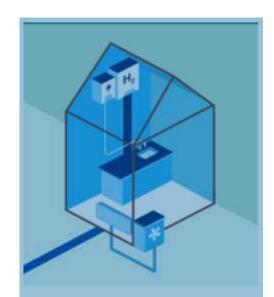
Woodchips bedding


Sand in cubicles



Freewalk cheese and A2 milk

Oxidation by burning methane or capture



Hydrogen (H2) for 70 neighbours

Hydrogen production:

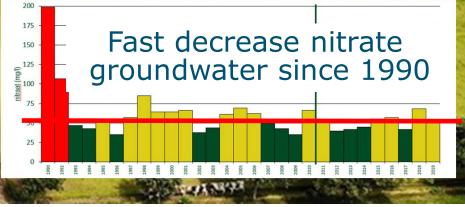
- * Solar panels and windmill
- * Electrolyser
- * Storage and pressure unit

- * Hydrogen
- * Green gas
- * Using existing gas network

Homes:

- * Insulation up to label B
- * Solar panels
- * Heat pomp
- * Hydrogen boiler

Innovation centre De Marke


Producing food, energy, eco-services, nature

Optimize nutrient cycle

Precision farming cows and field

Digester

How to respond to key changes?

Solutions

Technical & management
cow and soil

Entrepreneurship

farm, region, chain

Resilience for Dairy (R4D) has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101000770

Questions?

Univerza v Ljubljani

esilience

for

0

Cagasc

C A U Kiel University Christian-Altrechts-Universität zu Kiel

