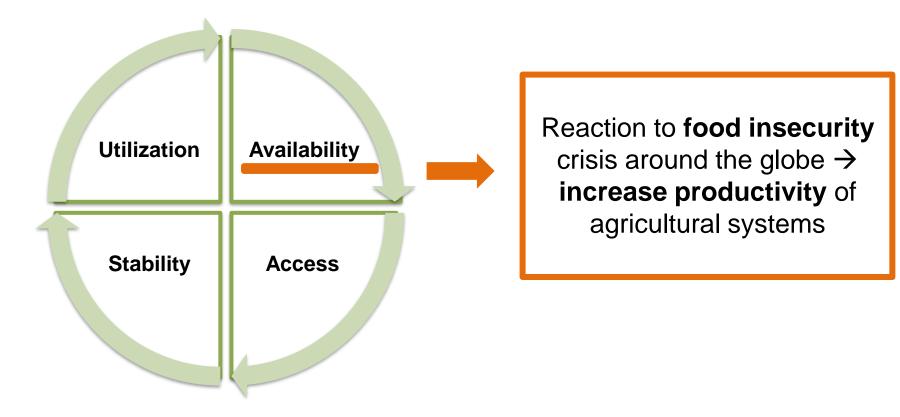






Walloon Agricultural Research Centre


# Resilience of contribution to food security of specialized Walloon dairy systems

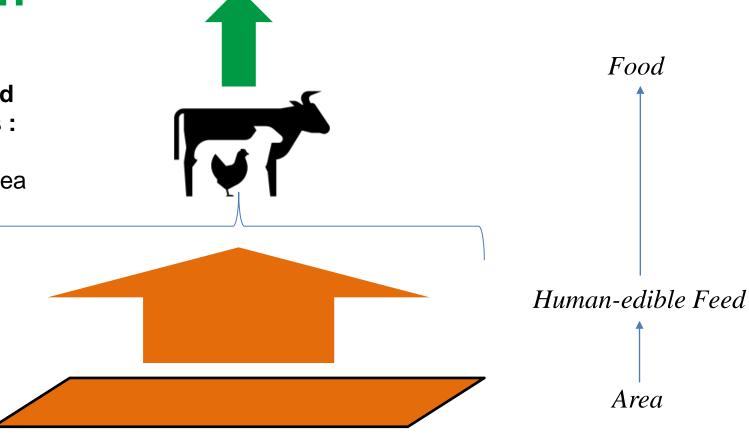
C. Battheu-Noirfalise<sup>1,2</sup>, E. Froidmont<sup>1</sup>, D. Stilmant<sup>1</sup>, Y. Beckers<sup>2</sup>

<sup>1</sup>Walloon Research Centre, Libramont, Belgium

<sup>2</sup>Gembloux Agro-Bio Tech, Gembloux, Belgium

Food security




The four interconnected dimensions of food security

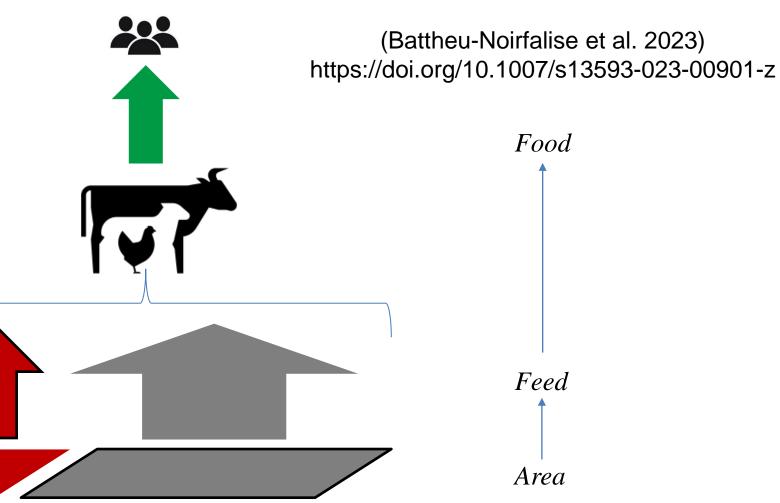


Gross productivity

# Limiting factors of food production by animals:

- Human-edible feed
- Non human-edible area




 $Gross\ productivity: \frac{Human\ Edible\ Protein}{Total\ Area}$ 



Net productivity

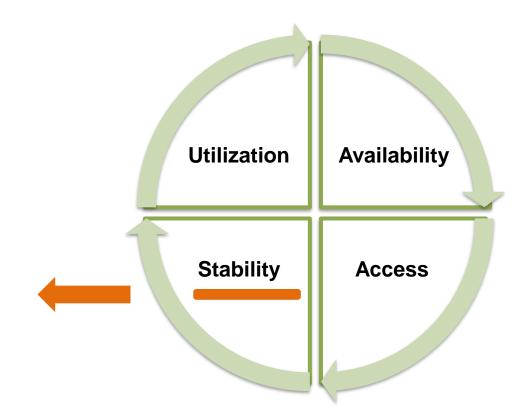
## Limiting factors of food production by animals:

- Human-edible feed
- Non human-edible area








Resilience of production

(Zampieri et al. 2020)

https://doi.org/10.1016/j.scitotenv.2020.139378

#### **Resilience of production**

$$R_p = \frac{mean(P)^2}{Var(P)}$$



The four interconnected dimensions of food security

## **Objectives**

- Analyse the resilience of contribution to food security of dairy systems
  - H: intensive systems have lower resilience of net productivity ~ fixed requirement in rich feeds of high productive cows
- Compare the results of gross and net productivity
  - H: net productivity has lower resilience than gross productivity ~ lower mean value
- Study the influence of the end of milk quotas
  - H: resilience of both metrics will decrease after the end of milk quotas ~ destabilization of the market + farms will increase intensification to cope with open market prices





#### Results

Farm types

|                                                                   | IG     | livi   | EG     |
|-------------------------------------------------------------------|--------|--------|--------|
| Number of farms                                                   | 29     | 16     | 34     |
| Milk production per cow (kg FPCM cow-1 year-1)                    | 7580 a | 7670 a | 5480 b |
| Grassland yield (t DM ha <sup>-1</sup> )                          | 9.3 a  | 7.8 b  | 7.3 b  |
| Percentage of maize silage (%)                                    | 6 b    | 38 a   | 9 b    |
| Concentrates per cow (kg DM cow <sup>-1</sup> day <sup>-1</sup> ) | 4.8 a  | 4.2 a  | 2.3 b  |
| CP-content of concentrates (%)                                    | 19.8 b | 26.3 a | 19.8 b |
| Stocking rate (LU ha <sup>-1</sup> )                              | 2.33 a | ∠.b∠ a | a ea.r |
| Age at first calving (months)                                     | 29.2 b | 30.3 b | 33.6 a |
| Female followers per cow (cow-1)                                  | 0.75 b | 0.88 a | 0.63 c |
|                                                                   |        |        |        |



Gross productivity (kg HDP ha<sup>-1</sup>)

IG IM EG
302 +/- 52 a 301 +/- 68 a 199 +/- 51 b

<u>Definition of farm types:</u> Kmeans clustering on the PCs On the mean of the years

INЛ

IG : Intensive Grass IM : Intensive Maize EG : Extensive Grass



#### Results

Influence of milk quota regime

|                                               |            | IG         |       |            | IM         |       |             | EG         |       |
|-----------------------------------------------|------------|------------|-------|------------|------------|-------|-------------|------------|-------|
| Milk quota                                    | Yes        | No         | P-val | Yes        | No         | P-val | Yes         | No         | P-val |
| Gross productivity (kg HDP ha <sup>-1</sup> ) | 306 +/- 44 | 298 +/- 50 |       | 297 +/- 51 | 305 +/- 71 |       | 212 +/- 45> | 185 +/- 48 | ***   |
| Net productivity (kg HDP ha <sup>-1</sup> )   | 272 +/- 46 | 266 +/- 53 |       | 236 +/- 41 | 227 +/- 55 |       | 195 +/- 43> | 170 +/- 47 | ***   |
| Resilience of gross productivity ()           | 92.6       | 90.8       | ***   | 63.9       | 56.4       | ***   | 56.1        | 49.5       | ***   |
| Resilience of net productivity ()             | 62.7       | 53.1       | ***   | 23.5       | 18.0       | ***   | 49.1        | 42.7       | ***   |



All farm types show a lower resilience of both gross and net productivity after the end of milk quotas :

- IG and IM ~ Variability
- EG ~ Mean value



#### Results

#### Influence of milk quota regime

|                                                                         |      |   | IG   |       |      |   | IM   |       |      | EG               |       |
|-------------------------------------------------------------------------|------|---|------|-------|------|---|------|-------|------|------------------|-------|
| Milk quota                                                              | Yes  |   | No   | P-val | Yes  |   | No   | P-val | Yes  | No               | P-val |
| Milk production per cow (kg FPCM cow <sup>-1</sup> year <sup>-1</sup> ) | 7490 | < | 7660 | *     | 7470 | < | 7870 | ***   | 5530 | 5440             |       |
| Fodder yield correction (%)                                             | 117  |   | 115  |       | 92   |   | 102  | ***   | 92   | 91               |       |
| Percentage of maize silage (%)                                          | 7    |   | 5    |       | 39   |   | 38   |       | 10   | 9                |       |
| Concentrates per cow (kg DM cow-1 day-1)                                | 4.6  |   | 5.0  | **    | 4.0  | _ | 4.4  | *     | 2.4  | 2.2              |       |
| CP of concentrates (%)                                                  | 20.4 |   | 19.3 | *     | 26.0 |   | 26.5 |       | 20.1 | 19.4             |       |
| Stocking rate (LU ha-1 farm-1)                                          | 2.39 |   | 2.26 | ***   | 2.56 |   | 2.67 |       | 1.75 | 1.62             | ***   |
| Age at first calving (months)                                           | 29.2 | > | 29.2 |       | 30.8 |   | 29.7 | *     | 33.0 | 34.3             | ***   |
| Female followers per cow (cow-1)                                        | 0.75 |   | 0.75 |       | 0.94 | > | 0.83 | ***   | 0.58 | <b>&lt;</b> 0.69 | ***   |
| ·                                                                       |      |   |      |       |      | > |      |       | •    | <                |       |



Farm types show specific evolution pathways:

- IG and IM show an intensification
- EG shows an extensification





#### **Discussion**

- Analyse the resilience of contribution to food security of dairy systems
  - H: intensive systems have lower resilience of net productivity ~ fixed requirement in rich feeds of high productive cows
  - The intensive and grass-based type (IG) shows the highest mean levels of net productivity and resilience of net productivity → IG can couple the dimensions availability and stability of food security
  - Although the intensive maize based type has a higher mean level of net productivity, its resilience of net productivity is lower than the extensive grass-based type
- Compare the results of gross and net productivity
  - H: net productivity has lower resilience than gross productivity ~ lower mean value
  - Net productivity show lower resilience ~ lower mean value than gross productivity
- Study the influence of the end of milk quotas
  - H: resilience of both metrics will decrease after the end of milk quotas ~ destabilization of the market + farms will increase intensification to cope with open market prices
  - The period after the end of milk quotas (> 2015) is associated with lower resilience. However, five years is a short period, that can also be influenced by other factors such as extreme weather events





Easily said, ... Hardly done.

# Valorize grass!



