Resilience for Dairy (R4D) has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101000770

Villa Contarini, 29th September 2023

III International Workshop Caseus

SOME TECHNICAL RESILIENT SOLUTIONS IN DAIRY FARMS

for

Tesilience

CASEUS

PROGRAMME

11.00 WELCOME and INTRODUCTION by APROLAV (President TERENZIO BORGA)

11.10 Introduction on farmers needs as defined by R4D project (Valérie Brocard - Project coordinator - IDELE- FRANCE), Serena Soffiantini and Alberto Menghi (Italian partner - CRPA - ITALY)

11.20 Mastitis detection (Kelly Schmit - LTA, Lycée Technique Agricole - LUXEMBOURG)
11.30 Strategic Hoof trimming (George Ramsbottom - TEAGASC - IRELAND)
11.40 Colostrum management (Sandra Debevere - INAGRO - BELGIUM)
11.50 Young stock weight (Evi Canniere - INAGRO - BELGIUM)

12.00 Conclusions and Q&A

Resilience for Dairy (R4D) has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101000770

Villa Contarini, 29th September 2023

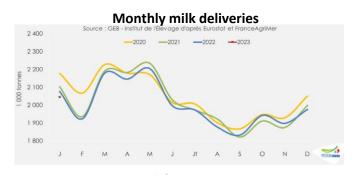
R4D FRAMEWORK AND INVENTORY OF NEEDS

Valérie Brocard IDELE, France

Serena Soffiantini Alberto Menghi CRPA, Italy

esilience

for



Dairy Production in France

Production 1984-2021

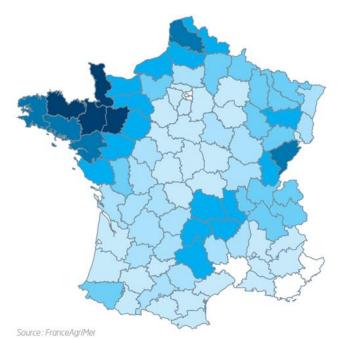
		1984	2015	2021
Milk yield	[mil. tonnes]	26,1	25.4	24.9
Dairy farms	[x 1000]	427	67	54
Dairy cows	[x 1,000,000]	6,764	3,637	3,322
Milk yield	[kg/cow p.a.]	3,859	6,990	7,500
Avg. herd size	[cows/farm]	16	59	68

maize silage sorghum silage fodderheets grass silage hayloge bay grazed grass other forages cereals beans orgens grains protein cakes conc. byproducts additives thinerals

Average yearly diet of a French dairy cow

Husbandry system

- Year-round calving
- Freestall barns (cubicles/deep bedding), plain or slatted floors, slurry or manure collection
 - Main breeds: Holstein, Normande (plains) Montbéliarde (piedmonts and untains). + crossbreds

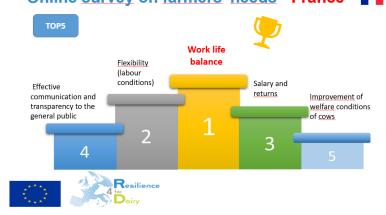

29 months old

- mountains),
- First calving:
 - Lactations: 2.5 on average

Grazing system

- Main systems: rotational grazing
 - combination of continuous + rotational
- Pasture access: 90 % of dairy cows
- Grazing season: 6-10 months/year
- Daily grazing time: 6-20 hours per day

Regional distribution



Challenges, targets, actions?

Challenges

- Facing climate change and hazards
- Reduce carbon footprint of milk and GHG emissions
- Increasing protein self-sufficiency
- Decreasing costs of inputs and energy
- Facing the decrease in organic milk consumption
- Generational renewal, attractiveness of dairy farming
- Dairy to beef
- Animal welfare/Happy cow Online survey on farmers' needs - France

2030 - Targets

- Reduce agricultural GHG emissions from 81 to 65 mil. tonnes CO2e (-20 % between 2030 and 2021) and 46% between 2050 and 2015
- Reduce N surplus to 90 kg/ha
- Increase organic farming area to 15 % of land use
- Increase area of oilseeds, protein crops and legumes to 8% of AA (2 millions ha)
- Achieve good ecological status in 100 % of water bodies
- Increase biodiversity by hedges and grassland
- Increase animal welfare (housing, outdoor access, transport,...)

What are the actions that are required?

Pathways to Dairy Net Zero

Cap Protéines: a roadmap to increase protein self sufficiency at farm and territorial level, to cut imports of 1.5 millions tons of soya cakes

2021-2024 THEMATIC NETWORK

«FARMERS LEARNING FROM FARMERS»

120 PILOT FARMERS

15 COUNTRIES 18 Partners

Resilience – KEY AREAS:

FINAL OBJECTIVE

Establish a range of **best practices** that are tailored to answer farmer's specific needs and society's expectations.

100 Factsheets POTENTIAL SOLUTIONS

1ST STEP

INVENTORY of **NEEDS** to improve farm resilience

2022 - Online survey

15 Countries

(D	FINANCIAL NEEDS	Easy access to credit
ŭ g		Strategic management and innovative resilience skills
and ence	BUSINESS MANAGEMENT: IMPROVE STRATEGIC	Economic calculators for on farm decision making
	SKILLS AND BUILD ROBUST BUSINESS MODELS	Multi-purpose farm (e.g. teaching farm, biogas production farm, milk production, agro-tourism, care farm)
sil		Added value milk (e.g. farm house cheese, hay or grass milk)
Economic and ocial resilience		Reliable information sources, knowledge and training (e.g. webinars, courses, lectures)
	INFORMATION SOURCES, KNOWLEDGE, TRAINING	Innovative channel of information
Econ		Flexibility
U U	LABOUR CONDITIONS	Salary/returns
ы с С		Work-life balance
		Career progression
		Innovative milking devices (e.g. robots)
		Innovative milking strategies (e.g. extended lactation)
		Innovative feeding systems for calves (feed composition, preparation and distribution)
>	DAIDY CATTLE MANACEMENT (housing genetic	Innovative feeding systems for cows (feed composition, preparation and distribution)
U	DAIRY CATTLE MANAGEMENT (housing, genetic,	Individual/herd milk yield estimator/recorder
0	feeding system,)	Innovative detectors/devices for metabolic disease, pathologies (e.g. mastitis, lameness), estrum, eating/grazing behaviour, calving time detectors
		Innovative devices for animal identification and/or localization
Ę		Innovative reproduction (e.g. embryo transfer, sexed semen, cross breeding) and genetic/genomic tools and strategies
Efficiency		Innovative devices for measuring grass growth and techniques for grazing management
		Innovative devices for measuring grass growth and technologies
Technical		Innovative hay production/management techniques and technologies
-Ĕ		Innovative silage production/management techniques and technologies
Ē	ANIMAL NUTRITION	Innovative TMR production/management technologies and techniques
C		Innovative and/or special supplements
Ĕ		Feed additives to mitigate Methane emissions
		Prevention (e.g. vaccination, good practice)
	ANIMAL HEALTH (and fertility)	Innovative testing/analysis for early detection of diseases (e.g. mastitis, infertility, metabolic diseases, lameness)
		Innovative therapies
0		Improvement of welfare conditions of calves
welfare ty		Improvement of welfare conditions of cows
ta ta	ANIMAL WELFARE	Environmental recording and assessment
la 🔪		Animal parameters recording and assessment
ety		Automatic microclimate regulation (e.g. sprinkler activated by temperature)
U D		Innovative and animal-friendly housing
nt, oci		Improving biodiversity
SC	ECOLOGICAL AND ENVIRONMENTAL	Environmental footprint assessment techniques and devices
a 3	FOOTPRINT/MITIGATION OF CLIMATE	Mitigation practices and strategies (e.g. to reduce GHG and/or ammonia emissions)
nn		Efficiency of nitrogen use (e.g. feeding and grassland use)
Environme and s	CHANGE/INPUTS EFFICIENCY	Soil management (e.g. land rotation)
Ţ.		Energy efficiency and use of renewable energy sources
É		Reducing antibiotic use (e.g. blanket dry cow therapy)
ш	SOCIAL ISSUES: BUILD SOCIETY FRIENDLY SYSTEM	Effective communication and transparency to the general public of agricultural practices and the role of agriculture in society

	COUNTRY	NUMBER OF RESPONSES
1	FLEMISH REGION (BE)	91
2	WALLON REGION (BE)	87
3	DENMARK	12
4	FRANCE	38
5	FINLAND	34
6	IRELAND	9
7	GERMANY	23
8	ITALY	55
9	LITHUANIA	14
10	LUXEMBOURG	16
11	HUNGARY	23
12	THE NETHERLANDS	25
13	NORTHERN IRELAND	14
14	POLAND	14
15	SLOVENIA	46
16	SPAIN	34
	TOTAL	535

SAMPLE SIZE No. 535

European overall results

RANK	NEEDS - European overall ranking - Top 20			
1	Work-life balance – QUALITY OF LIFE	83%		
2	Improvement of welfare conditions of cows – ANIMAL WELFARE	81%		
3	Salary/returns – QUALITY OF LIFE	80%		
	Innovative testing/analysis for early detection of diseases (e.g. mastitis, infertility, metabolic diseases,			
4	lameness) – PREVENTION - EARLY DETECTION	79%		
	Effective communication and transparency to the general public of agricultural practices and the role of			
5	agriculture in society – COMMUNICATION	77%		
6	Improvement of welfare conditions of calves – ANIMAL WELFARE	76%		
7	Flexibility – QUALITY OF LIFE	76%		
8	Energy efficiency and use of renewable energy sources – ENVIRONMENT	74%		
	Innovative detectors/devices for metabolic disease, pathologies (e.g. mastitis, lameness), estrum,			
9	eating/grazing behaviour, calving time detectors – PREVENTION - EARLY DETECTION	73%		
10	Innovative and animal-friendly housing – ANIMAL WELFARE	73%		
11	Efficiency of nitrogen use (e.g. feeding and grassland use) – ENVIRONMENT	72%		
12	Soil management (e.g. land rotation) – ENVIRONMENT	71%		
13	Reliable information sources, knowledge and training (e.g. webinars, courses, lectures) – MANAGEMENT	69%		
14	Economic calculators for on farm decision making – MANAGEMENT	68%		
15	Prevention (e.g. vaccination, good practice) – PREVENTION	68%		
16	Innovative feeding systems for cows (feed composition, preparation and distribution) – INNOV. IN FEED	67%		
17	Strategic management and innovative resilience skills – MANAGEMENT	64%		
18	Innovative silage production/management techniques and technologies – INNOV. IN FEED	64%		
19	Reducing antibiotic use (e.g. blanket dry cow therapy) - AM REDUCTION	63%		
20	Innovative feed production, storage techniques and technologies – INNOV. IN FEED	62%		

Further investigations by cluster

Farmers	379
Different professions	156

Up to 39 years	164
Over 40 years	371

Farmers	379
More than 100 cows	170

Male	405
Female	125
Prefer not to say	5

ISCED 1-5 (Within tertiary	239
education level)	
ISCED 6-8 (Bachelor's	296
level or upper level)	

Highlights

- The ranking shows the **variety of needs** that farmers have to face
- Results are homogeneous comparing different clusters
- The main themes are:
- farmers welfare (work-life balance, salary, work flexibility)
- animal welfare (cow and calves) and animal health (+++prevention \rightarrow AM reduction)
- communication with civil society
- environmental sustainability (renewable energy)
- management (farmers education, data driven decisions tools)
- Improvement of "Work-life balance" and "Transparent and effective communication with civil society" are in the top 5 issues, just on the same level of other more technical or economic challenges
- *"Work-life balance"* is always in the first 3 top positions regardless clusters (often 1st position): it is comprehensive parameter (*it is the final effect of other needs*)

Resilience for Dairy (R4D) has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101000770

Thank you

Tesilience

MIC

for

www.resilience4dairy.eu

PROGRAMME

11.00 WELCOME and INTRODUCTION by APROLAV (President TERENZIO BORGA)

11.10 Introduction on farmers needs as defined by R4D project (Valérie Brocard - Project coordinator - IDELE- FRANCE), Serena Soffiantini and Alberto Menghi (Italian partner - CRPA - ITALY)

11.20 Mastitis detection (Kelly Schmit - LTA, Lycée Technique Agricole - LUXEMBOURG)
11.30 Strategic Hoof trimming (George Ramsbottom - TEAGASC - IRELAND)
11.40 Colostrum management (Sandra Debevere - INAGRO - BELGIUM)
11.50 Young stock weight (Evi Canniere - INAGRO - BELGIUM)

12.00 Conclusions and Q&A

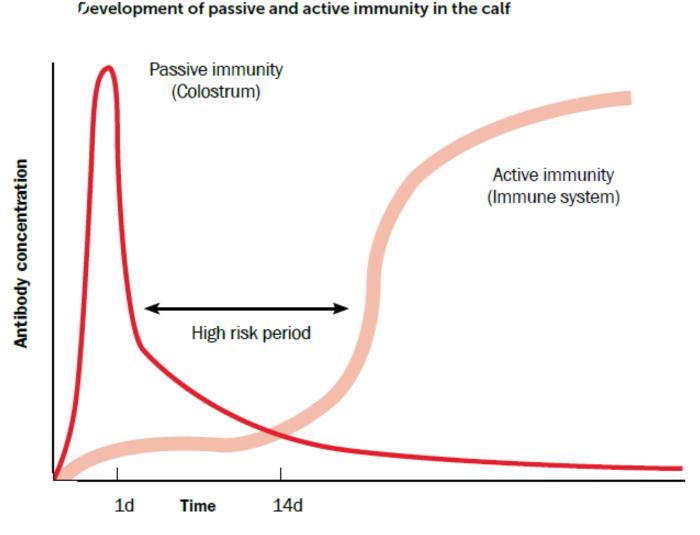
Colostrum management:

give your calves sufficent high quality colostrum to become productive cows

29-9-2023 Sandra Debevere (Inagro) Project "Veepeiler rund"*:

17% of the calves have **insufficient colostrum antibodies**** in their blood

Calves with insufficient colostrum antibodies in their blood are **2.6 times more likely to die** than other calves


*Belgian study on Flemish 87 farms with dairy and beef cattle Source: <u>https://edepot.wur.nl/530045</u>

**Reference value: 10 g/l (sick vs not sick)

Calves are dependent on antibodies in colosturm after birth

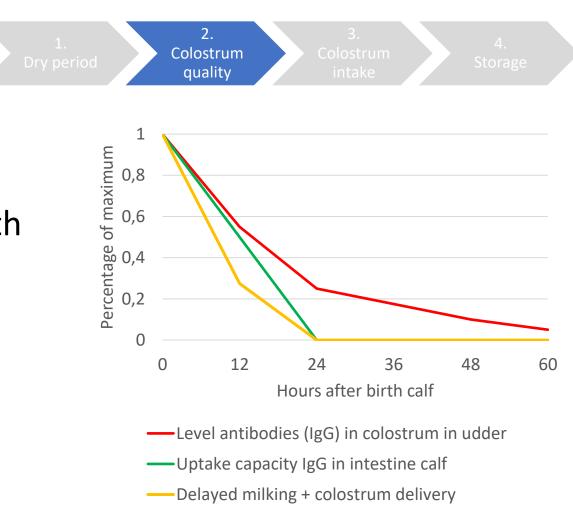
- Calves: born without active immunity
- Totally dependent on passive immunity via colostrum

BackgroundColostrum managementSpecific advices

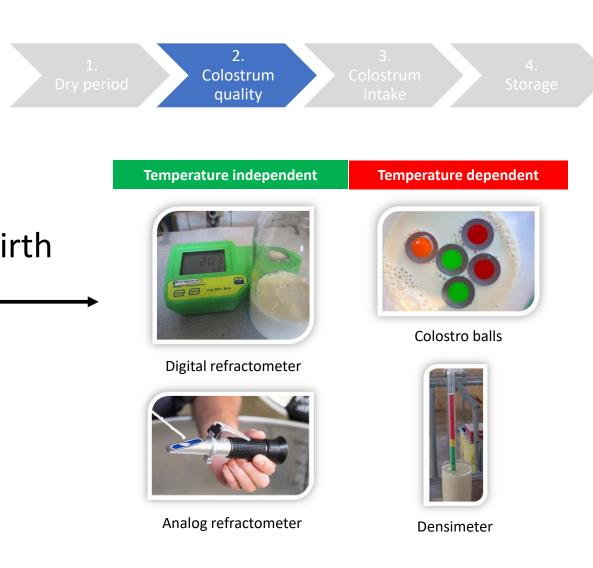
Colostrum management is more than just giving colostrum

Steps for a good colostrum management

Background	Colostrum management	Specific advices
------------	----------------------	------------------

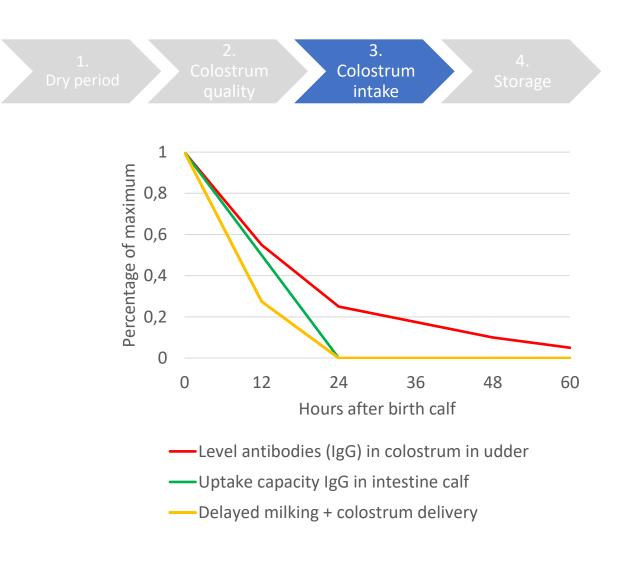

Colostrum management starts already before calving

- Dry matter intake (target value (TV): 12kg DM/day)
- Crude protein (TV: 13-14% CP in far-off, 14-15% in close-up)
- Vitamins and minerals (Selenium: ≥1,5mg/day; vitamin E: 1000 1200 units extra in dry period...)
- Access to (clean) water (intake: min. 40L/day)


Check the quality of colostrum

- Milk the cow directly after giving birth
- Check the colostrum quality (>22 brix or 55 IgG/L)

Check the quality of colostrum


- Milk the cow directly after giving birth
- Check the colostrum quality (>22 brix or 55 IgG/L)

Specific advices

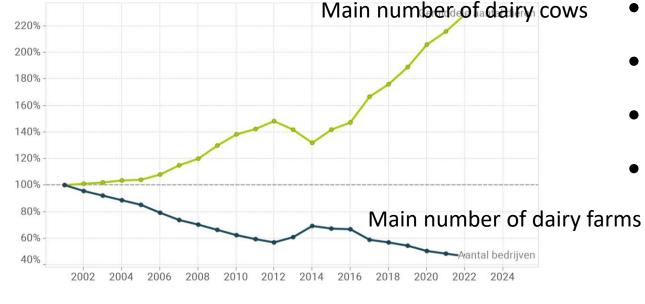
Time is money!

- Feed colostrum within 6 hours
- Minimum 220g IgG, strive for 300g IgG

Refractometer (brix)	Densimeter	Colostro Balls	IgG (g/L)	Litre
14	1028			
15				this situation
16			an alt	ernative, e.g.
17			colost	rum stored in
18	1030		th	e freezer!
19				
20	1035		24	9
21			35	6
22	1045		47	5
23			58	4
24			70	3
25	1060		82	3
26			93	2
27			105	2
28			116	2
29	1075		128	2
30			139	2

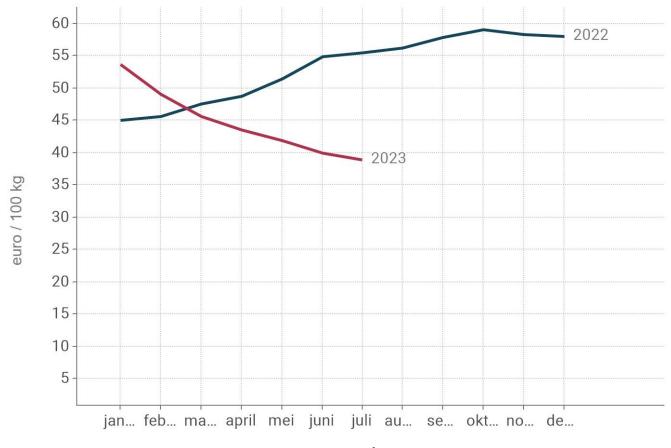
Goal: administer minimum 220g IgG within 6 hours after birth! Don't waste good colostrum by incorrect storage

- Store colostrum immediately and hygenically
- In the fridge (max. 2 days)
- In the freezer (max. 1 year)
- Defrost slowly (water bath, fridge), never above 60°C (no microwave!)



Things to remember:

- Drench probe can be used if calf doesn't drink enough
- Colostrum check can be performed to check colostrum management
- Key words:
 - Quick
 - Fresh
 - Much
 - Often


Key figures Belgium - Flanders

In Belgium (Flanders), in 2022:

- 8.258 (4.593) dairy farms
- 524.949 (339.580) dairy cows
- ±64 (74) cows/dairy farm
- Milk production:
- _{farms} > 4 billion L milk / year (70% in Flanders, 30% in Wallonia)

Milk price Belgium (fat & protein corrected milk)

month

Measuring young stock for optimal growth

29-9-2023

Sandra Debevere (Inagro)

Evi Canniere (Inagro)

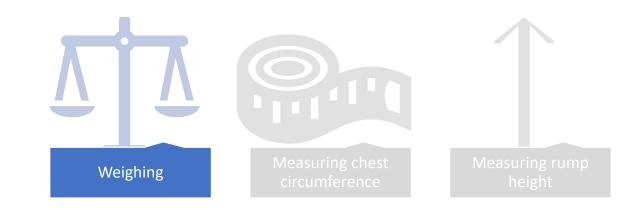
Healthy growth during the first two years of life results in sufficiently mature heifers calving at **24 months**.

Mean age at first calving (AFC) in Europe: 26 months*

*UNIFORM-Agri Source: <u>https://www.uniform-agri.com/nl/blog/unieke-vergelijking-</u> melkveehouderijen-met-data-uit-9-verschillende-landen/ Get insight in the growth of your calves

Measuring on a regular basis:

- Detect at early stage if growth is not optimal
- Intervene quickly
- Optimizing growth:
 - lower rearing costs
 - Higher milk production
 - More sustainable livestock



3 methods possible to measure growth

Weighing: precise but labour intensive

- Most precise method
- Need of a good weighing scale (€)
- Labour intensive

Measuring chest circumference: good alternative

- Tape behind the elbows
- Don't tighten too much (2 fingers below tape)
- Animal must stand nicely squared
- Based on this measurement
 - \rightarrow weight can be estimated

Measuring rump height: not that good alternative

- Flat horizontal surface needed
- Chick with a spirit level
- Measure height at 2 hip bones
- Animal must stand nicely squared
- Based on this measurement
 - \rightarrow weight can be estimated

Optimal growth Holstein cal

	Weight (kg)	Chest circumference (cm)	Rump height (cm)
Optimal growth curve for	40	75	81
	45	78	83
Holstein calves	55	84	87
	65	89	90
	75	94	93
2 months	85	99	95
	100	105	99
	110	108	101
	125	114	104
	145	120	107
	160	125	110
	180	130	113
6 months	200	135	116
	220	140	118
	240	145	121
	265	150	124
	290	155	126
	315	160	129
	345	166	132
	370	170	134
13 months	400	175	137
	435	180	139
Important growth milestones for Holstein calves:	470	186	142
 2 months: 80-85kg 	505	191	144
_	545	196	147
 6 months: 200kg 	585	201	150
 13 months: 380-400kg 	625	206	152
 At calving: 630kg (calf included) 	665	211	155
Ar calving, usung (call included)	710	216	157

Specific advice

Link measuring with fixed moments

(e.g. weaning, moving pen/stable)

→ Help making regular measuring become a habit

Herd size (cows) First lactation (%) Milk yield (kg/cow) Milk fat plus protein (kg/cow) Milk fat plus protein (kg/kg LW Calving interval (days) 6 week calving rate (%) Concentrate (kg DM/ cow) Other supplements (kg DM/cov N mineral fertiliser (kg/ha) **Grassland area (%)** Forage crop area (%) Stocking rate (cow/ha; kg LW/ł

Ireland's pasture-based dairy sector

	93	20
	19	20
	5,874	
	442	
	0.83	
	388	N
	67	C
	1,222	
W)	0	Μ
	164	
	95	N
	5	C
ha)	2.1; 1,150	A

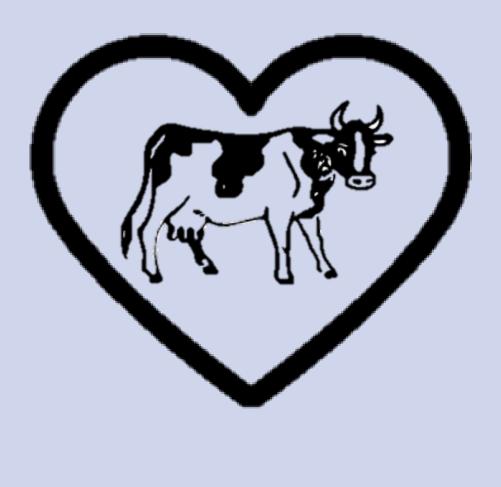
022 Milk price (€ cent/l) 022 Total costs (€ cent/l excl. family let profit (€/ha farmed) 0ebt (€/cow) 0ebt servicing (€ cent/ l)

I surplus (kg N/ha) intensity (kg CO2 eq./ kg FPCM) griculture GHG emissions (share %) Iethane (% of total Ag GHG emissior

N surplus (kg N/ha) C intensity (kg CO2 eq./ kg FPCM) Agriculture GHG emissions (share %) Methane (% of total Ag GHG emission

	60.0						
labour)	35.5						
	2,253						
	900						
	0.6						
	173						
	0.88						
	37						
ns)	72						

	173
	0.88
	37
ns)	72


Factsheet 204

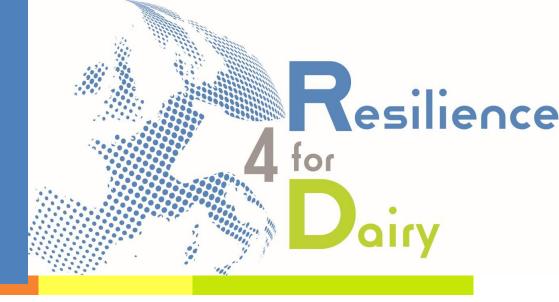
Topic

Animal Welfare

Topic

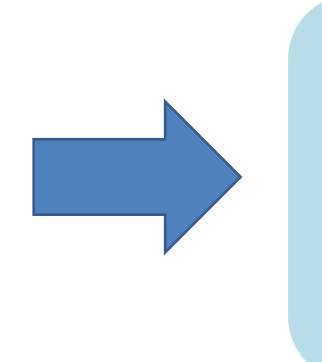
Economic Resilience

Strategic hoof trimming to improve herd health status and longevity



• Lameness is a major animal welfare concern within the dairy industry, and leads to financial losses • Median herd lameness prevalence in Ireland is 7.9% during grazing and 9.1% during housing (Browne et al. 2022), but has been reported high as 55% in North America (von Keyserlingk et al., 2012) • Strategic hoof trimming, also knows as routine hoof trimming, is a preventative practice where the entire herd has their hooves examined (and trimmed if required)

Background



In 2019/2020 only 6% of dairy farmers in Ireland carried out routine trimming of their herd housing (Browne et al., 2022)

Routine inspection of the entire herd

Lift cows in trimming crate

How does the strategy work?

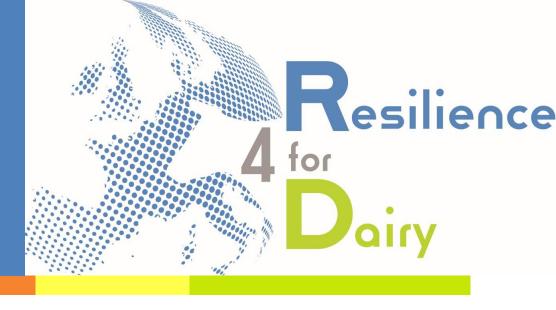
Inspect hooves and trim if required

Minimum 1 x per year (at drying off)

Second routine inspection ~8 weeks postpartum may be beneficial

When

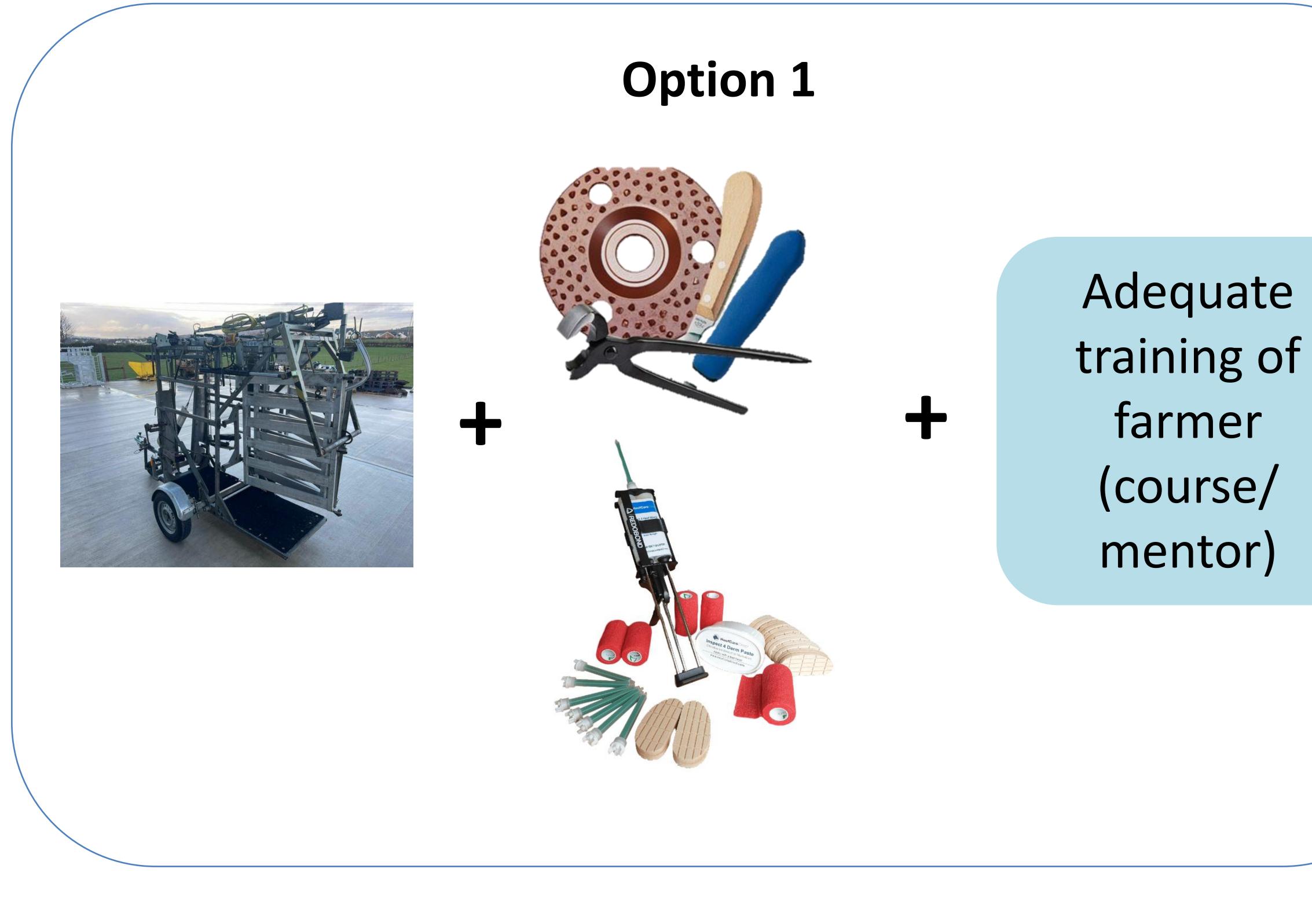
Suggested method


Five-step Dutch method

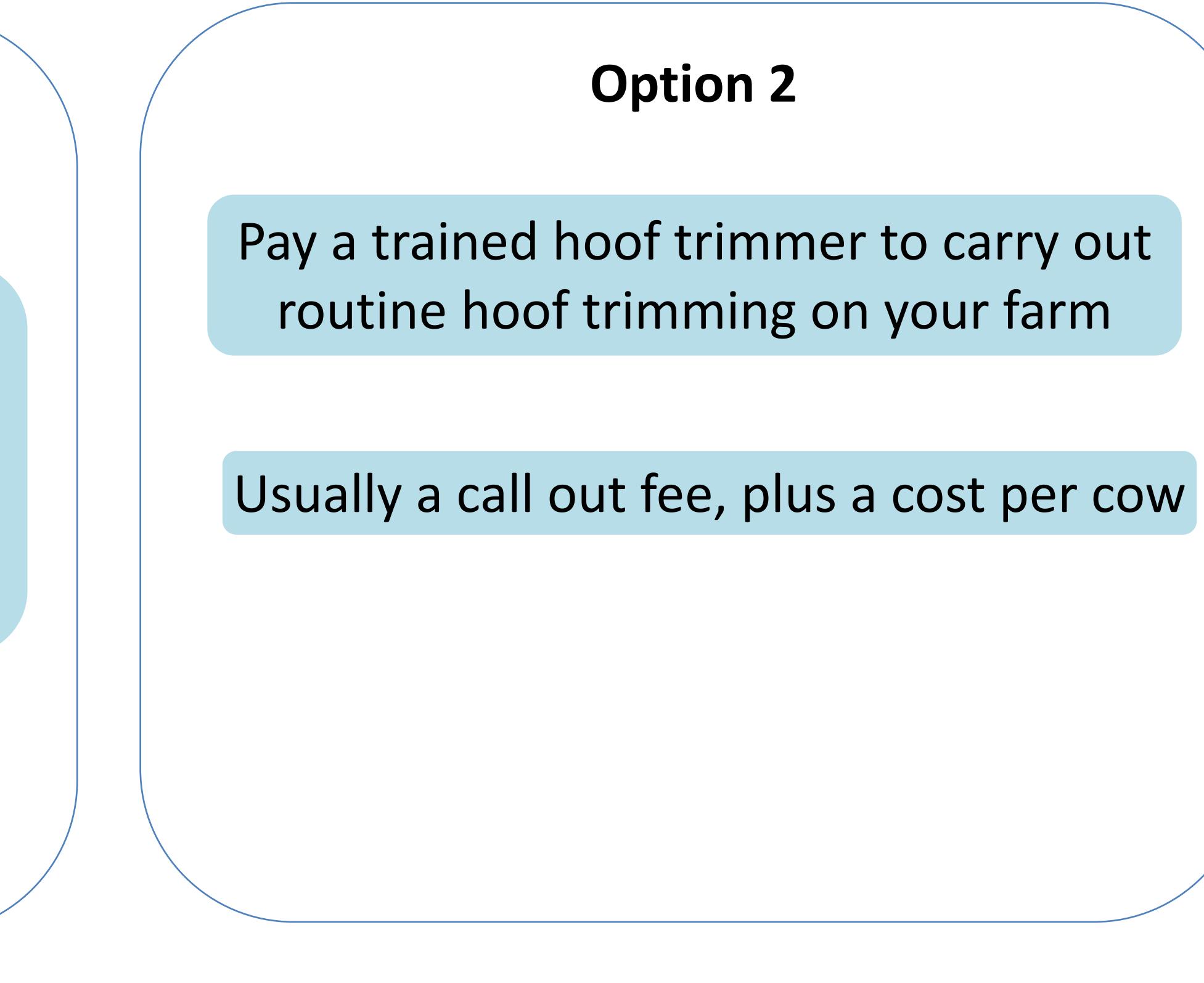
Functional trimming

- 1)
- Match untrimmed claw 2) length/level

Corrective trimming


- 4)

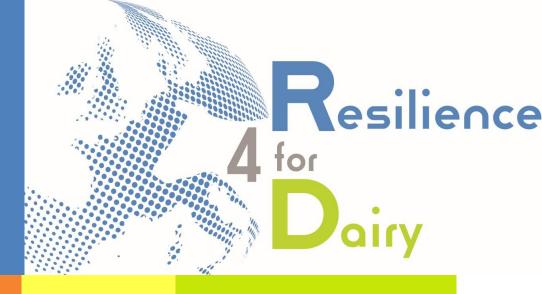
Trim toe length to correct length

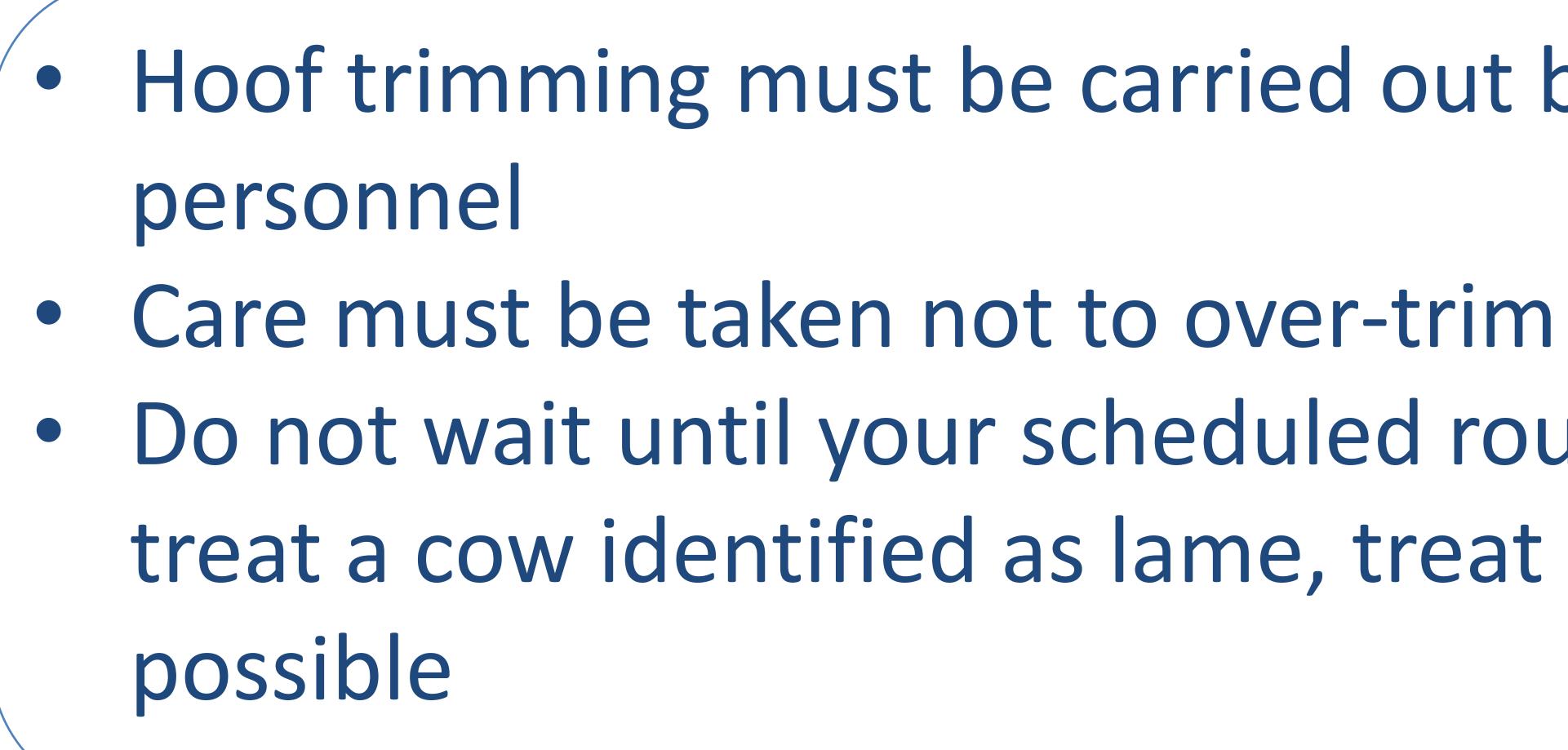

3) Model (dish) out sole ulcer site Relieve weight off painful claw 5) Remove loose/under-run horn and hard ridges in high risk zones

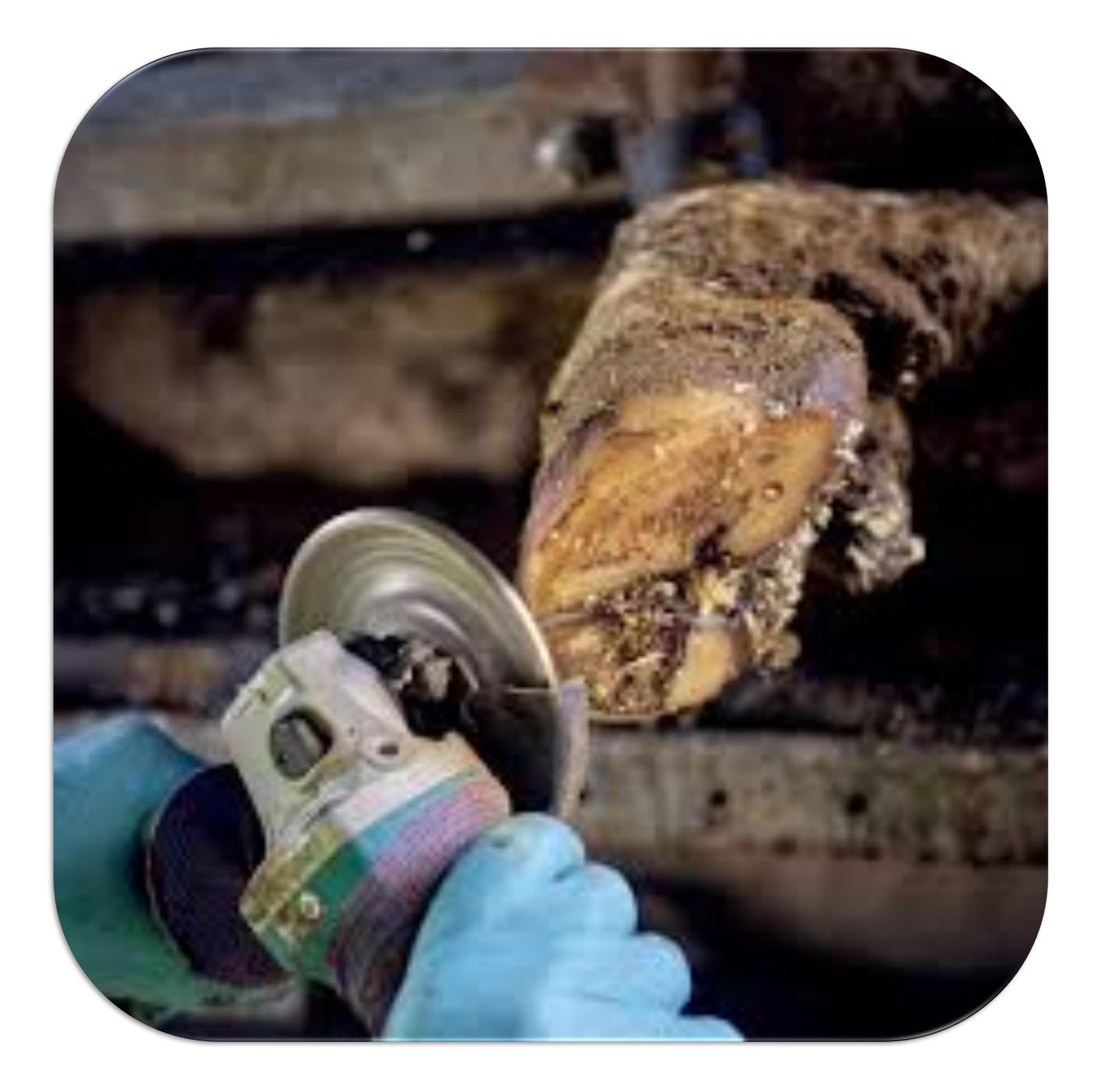


Equipment involved? Investment?

Restores hoof conformation across the medial and lateral claws


- Detection and treatment of mild lesions that are not yet causing lameness
- is a risk to some lesion types risks to be minimised on farm and animal welfare and reducing economic costs
- Reduce the number of cows with overgrown claws, which Identify the most common lesions, allowing associated • Prevention of future lameness cases, improving longevity

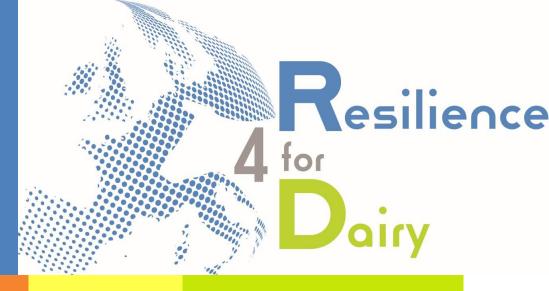


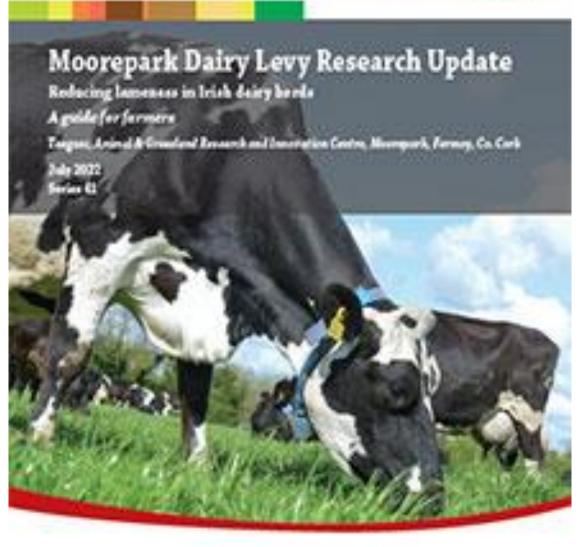


• Hoof trimming must be carried out by trained

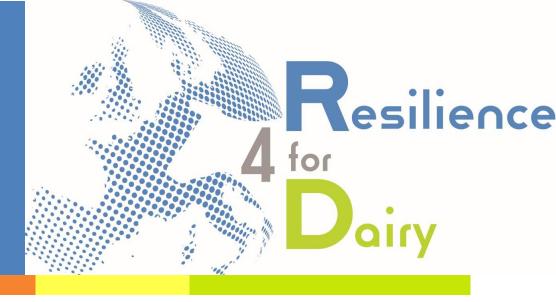
• Do not wait until your scheduled routine trim to treat a cow identified as lame, treat as soon as

• Routine trimming should be seen as a 'routine inspection'. Upon inspection of the hoof, trained personnel should decide if trimming is required


Further advice on lameness can be found in the following book: https://www.teagasc.ie/publications/2022/reducing-lamenessin-irish-dairy-herds.php


Specific advice

Cows walking long distances to pasture may not require routine trimming, however, should still be inspected



"Routine trimming helped me to reduce the lameness prevalence in my herd, saving me time and money"

Quote from an Irish farmer

Resilience for Dairy (R4D) has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101000770

Solution 1 – Mastitis detection

Schmit Kelly

Farm Facilitator Luxembourg

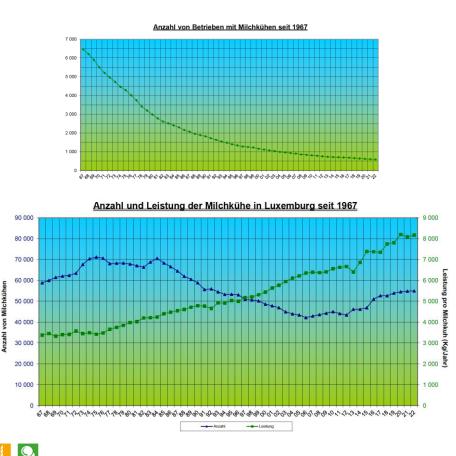
Tesilience

for

Caseus III Workshop international

29/09/2023

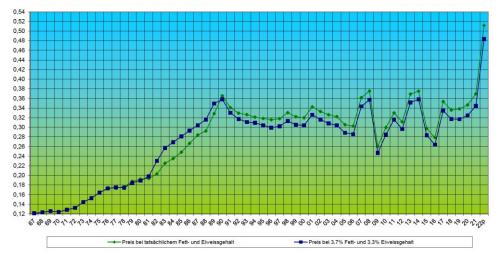
Dairy Sector in Luxembourg


Year	1970	1980	1990	2000	2010	2016	2017	2018	2019	2020	2021	2022
Farms	5501	2984	1822	1159	810	694	680	662	638	620	603	589
Milk cows	62049	67830	58840	48607	45008	51025	52701	52645	53947	54536	54828	54971
Production (1000 t)	210.9	270.1	281.7	264.5	295.3	376.2	387.2	407.6	421.3	447.3	443.3	449.0
Milk price (€/kg)	0.12	0.19	0.37	0.32	0.30	0.28	0.35	0.34	0.34	0.35	0.37	0.51

Dairy Sector in Luxembourg

No milk quota since April 2015:

- Number of farms decreased, but the average number of cows per farm increased to 93 in 2022 (cf.: 66 in 2015)
- Number of cows increased, + 8.000
 → 54.971 cows in 2022
- Number of cows milked in a milking robot has doubled, > 22.000 cows in 2022
- Milk performance increased, +700kg
 → 8.167 kg/cow/year in 2022



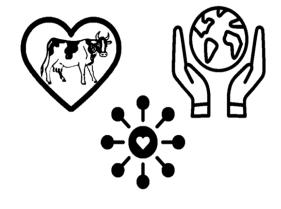
Technique

Dairy Sector in Luxembourg

- milk price: very fluctuating
- in 2022 0,48 €/kg for milk with
 - 3,7 % fat and 3,3 % protein
- Main dairy is LUXLAIT: all kind of milk products
- Large part of the milk produced is exported
 - (e.g. ARLA, Hochwald)

Milchpreis in €/kg seit 1967

Challenges detected:


- development and spread of antimicrobial resistance
- the major proportion of antimicrobials is applied for the treatment of udder inflammation (68%)

Solution:

- Reducing the use of antibiotics in the dairy production
- Optimization of antimicrobial usage in dairy production
- Detect mastitis pathogens quickly and treat them correctly with MASTdecide

Positive impact on:

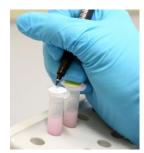
- Animal welfare
- Environnement
- Society friendly

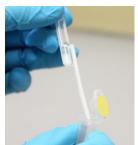
- Mastitis is probably the best-known udder disease
- The **cell content** provides information about udder health

 \rightarrow Determination of the germ type

 \rightarrow Decision on treatability

MASTDECIDE = Decision Tool for selective treatment


Suspicion of Mastitis


- Sampling:
 - Collect a quarter foremilk sample
- Implemention:
 - add 0,1 ml milk to each of the 2 MastDecide test tubes
 - Place the test tubes in the preheated incubator for <u>12 hours (</u>37°C)

Evaluation of the color of the two test media (3 cases)

No pathogen detected

No additional measure

Gram-negative or coliform

No additional measure

Gram-positive

Local antibiotic treatment

VS.

COSTS

package MastDecide:

• 101,15 € for 10 tests

Additional material needed:

- Incubator 37 °C for 94,01 €
- Reaction vessel stand for 26,78 €
- Disposable gloves

POSITIVE Features

- Quick results on the farm
- pathogen-specific therapy selection
- Saves up to 60 % antibiotics
- Reduces antibiotic use, costs and milk losses
- For the benefit of animal

health and public welfare

Conclusion

- Fast and correct measure without useless use of antibitotics
- Helps to make a decision
- occasionally send samples to the lab for testing to better assess the farm situation
- The whole thing would be really innovative if it were integrated into milking robot technology in the future

Resilience for Dairy (R4D) has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101000770

Thank you!

for

0

esilience

AARHUS

Kiel University Christian-Albrechts-Universität zu Kiel

CIA

Univerza v Ljubljani

